
Olist Architecture
From monotith to microservices



• Programador amador desde 1986, profissional 
desde 1989 e pythonista desde 2000 

• Criador e ex-moderador da da python-
brasil@yahoo (atual python-brasil@googlegroups) 

• Criador da primeira versão do www.python.org.br 

• Sócio fundador e ex-presidente da Associação 
Python Brasil 

• Autor do (antigo) livro Python e Django 

• Atualmente na Olist 

• osvaldo@olist.com e @osantana (ou @osantanabr)

Osvaldo

http://www.python.org.br
mailto:osvaldo@olist.com


O que nós fazemos?

Merchants 
Online | Offline



Previous System
Monolithic



Monolithic
No Scalability



Monolithic
No Reliability



Monolithic
No Safety



Monolithic
Complex

AngularJS



New Platform
Let's write a new version...



Requirements



Requirements
Simplicity



Requirements
Scalability



Requirements
Resilience



Requirements
Modularity



Requirements
Safety



Premisse

• No matter if a system is internal or external, it eventually… 

• … goes offline… 

• … crashes… 

• … or change their behaviour without notice.



New Architecture



Microsservices
... or SOA



Microservices
Implementation Models



Communication via API

A 
P 
I

A 
P 
I 

G 
a 
t 
e 
w 
a 
y

A 
P 
I

A 
P 
IHTTP Requests



Communication via API

• RESTful communication 
between services

• Synchronous Service Calls

• Strict dependency between 
services

A 
P 
I

A 
P 
I 

G 
a 
t 
e 
w 
a 
y

A 
P 
I

A 
P 
IHTTP Requests



Communication via API

• RESTful communication 
between services

• Synchronous Service Calls

• Strict dependency between 
services

A 
P 
I

A 
P 
I 

G 
a 
t 
e 
w 
a 
y

A 
P 
I

A 
P 
IHTTP Requests



Communication via API

• RESTful communication 
between services

• Synchronous Service Calls

• Strict dependency between 
services

A 
P 
I

A 
P 
I 

G 
a 
t 
e 
w 
a 
y

A 
P 
I

A 
P 
IHTTP Requests



Communication via API

• RESTful communication 
between services

• Synchronous Service Calls

• Strict dependency between 
services

A 
P 
I

A 
P 
I 

G 
a 
t 
e 
w 
a 
y

A 
P 
I

A 
P 
IHTTP Requests



Communication via API

• RESTful communication 
between services

• Synchronous Service Calls

• Strict dependency between 
services

• No resilience

• No safety* (eg. data loss on 
request failures)

A 
P 
I

A 
P 
I 

G 
a 
t 
e 
w 
a 
y

A 
P 
I

A 
P 
IHTTP Requests



Async Task Execution

Workers

A 
P 
I

Task #1 

Task #2 

Task #3 

call task #1
call task #2
call task #3



Async Task Execution

• Asynchronous Procedure Calls

• Queue based task execution

• Client must knows about their 
dependents (I've to change API 
every time I need to add a new 
task)

Workers

A 
P 
I

Task #1 

Task #2 

Task #3 

call task #1
call task #2
call task #3



Async Task Execution

• Asynchronous Procedure Calls

• Queue based task execution

• Client must knows about their 
dependents (I've to change API 
every time I need to add a new 
task)

Workers

A 
P 
I

Task #1 

Task #2 

Task #3 

call task #1
call task #2
call task #3



Async Task Execution

• Asynchronous Procedure Calls

• Queue based task execution

• Client must knows about their 
dependents (I've to change API 
every time I need to add a new 
task)

Workers

A 
P 
I

Task #1 

Task #2 

Task #3 

call task #1
call task #2
call task #3



Async Task Execution

• Asynchronous Procedure Calls

• Queue based task execution

• Client must knows about their 
dependents (I've to change API 
every time I need to add a new 
task)

Workers

A 
P 
I

Task #1 

Task #2 

Task #3 

call task #1
call task #2
call task #3



Async Task Execution

• Asynchronous Procedure Calls

• Queue based task execution

• Client must knows about their 
dependents (I've to change API 
every time I need to add a new 
task)

Workers

A 
P 
I

Task #1 

Task #2 

Task #3 

call task #1
call task #2
call task #3

Task #4 

call task #4



Async Task Execution

• Asynchronous Procedure Calls

• Queue based task execution

• Client must knows about their 
dependents (I've to change API 
every time I need to add a new 
task)

• No decoupling ➡ No 
modularity

• No safety* (eg. data loss on 
deployment failures)

Workers

A 
P 
I

Task #1 

Task #2 

Task #3 

call task #1
call task #2
call task #3

Task #4 

call task #4



Message Event Triggering

Topic

A 
P 
I

Service Service Service



Message Event Triggering

• Action Event triggering

• Queue based message event 
handling

• Event as messages

Topic

A 
P 
I

Service Service Service



Message Event Triggering

• Action Event triggering

• Queue based message event 
handling

• Event as messages

Topic

A 
P 
I

Service Service Service



Message Event Triggering

• Action Event triggering

• Queue based message event 
handling

• Event as messages

Topic

A 
P 
I

Service Service Service

queues

publish

consumers



Message Event Triggering

• Action Event triggering

• Queue based message event 
handling

• Event as messages

• That's it!

Topic

A 
P 
I

Service Service Service

queues

publish

consumers



Microservices
Building Blocks



Messages

• Also known as Resource in 
REST context 

• Follow a contract (schema) 

• Can be wrapped with metadata 
(eg. SNS/SQS metadata)



Topics (global)

• Publisher in PubSub Pattern 

• Global topics for message 
publication 

• Topics belong to the system (or 
architecture) and not to a 
(micro)service 

• AWS SNS



Service Queues

• Subscribers in PubSub Pattern 

• Queues subscribe topics 

• One queue belong exclusively 
to one (micro)service 

• AWS SQS 

• SQS can be used as a SNS 
subscriber



Microservices
Patterns



API

• Data Entry Point 

• Data Validation 

• Workflow Management (eg. 
status/state machine) 

• Data Persistence 

• Event Triggering 

• Idempotency handling (eg. discard 
duplicated requests returning a 
HTTP 304 Not Modified) 

• Python, Django, DRF

A
P
I



API (webhook)

• Data Entry Point 

• No Data Persistence 

• Proxy HTTP ➡ SNS 

• Event Triggering 

• Python, Django, DRF

W
e
b
h
o
o
k



Service (consumer)

• Event Handling / Message 
Processing 

• Business Logic 

• Python, Loafer

API

Get Data...Service



Service (broker)

• Event Handling / Message 
Processing 

• Business Logic 

• Python, Loafer

API

Broker



Service (job)

• Scheduled Job 

• No Persistence 

• Event Triggering 

• Python 3

Job⏲



Client

• Web or Mobile Applications 

• No Persistence (or basic 
persistence) 

• Web presentation of APIs' 
resources 

• Python 3, Django

W
e
b
A
p
p

A
P
I



Libraries

• Common Libraries — common utilities for APIs and 
Services (eg. event triggering/topic publishing) 

• Client Libraries — libraries to connect our APIs 

• Open Source Libraries — useful libraries for community 
(eg. correios)



Tools

• Data Migrator — tool that connects in all databases and 
provides a small framework for data migration. It uses 
Kenneth Reiz's records library. It was initially used to 
migrate data from the old version of our application. 

• Toolbelt — tool that provide basic management commands 
to interact with our APIs, partner APIs and to make ease to 
manage SQS queues or trigger some events in SNS Topics.



Working Sample

Webapp



Working Sample

Webapp Fulfillment 
API

http 
request



Working Sample

Webapp Fulfillment 
API

http 
request

topic

trigger 
event



Working Sample

Webapp Fulfillment 
API

http 
request

topic

trigger 
event

queue



Working Sample

Webapp Fulfillment 
API

http 
request

topic

trigger 
event

queue
plp 

generating 
service

Carrier 
API



Working Sample

Webapp Fulfillment 
API

http 
request

topic

trigger 
event

queue
plp 

generating 
service

Carrier 
API

topic



Working Sample

Webapp Fulfillment 
API

http 
request

topic

trigger 
event

queue
plp 

generating 
service

Carrier 
API

topic

queue

plp-closing-service



Working Sample

Webapp Fulfillment 
API

http 
request

topic

trigger 
event

queue
plp 

generating 
service

Carrier 
API

topic

queue

plp-closing-service

Correios' 
API



Working Sample

Webapp Fulfillment 
API

http 
request

topic

trigger 
event

queue
plp 

generating 
service

Carrier 
API

topic

queue

plp-closing-servicesuccess

queue

generate pdf 
upload pdf to s3 

set tracking code and 
pdf url at fulfillment-api

Correios' 
API



Working Sample

Webapp Fulfillment 
API

http 
request

topic

trigger 
event

queue
plp 

generating 
service

Carrier 
API

topic

queue

plp-closing-servicesuccess

queue

generate pdf 
upload pdf to s3 

set tracking code and 
pdf url at fulfillment-api

Correios' 
API



Microservices
Deployment







• Hosted on Heroku PaaS (our secret weapon!) 

• Easy deployment, configuration management, log 
handling, etc 

• Heroku PostgreSQL Database 

• Easy deployment, easy configuration and setup, easy 
backup, replica and foreign data wrappers 

• Other services and tools 

• Logentries, Sentry and New Relic



Microservices
Challenges



• It's hard to make evolution of message/resource contracts 
between services 

• All sequential process must be splitted over multiple (small) 
services 

• Denormalization of data can easily lead to problems of data 
consistency if we do not take certain precautions 

• Information needed for one API must be replicated 
through services and stored locally 

• Data migration or refactoring in several services requires 
the development of an specific application



Development



Development
Remote Team



Development Tools

• Github - code management 

• CircleCI - continuous integration 

• vim / PyCharm / SublimeText / etc - development



Communication Tools

• JIRA - project management 

• Confluence - documentation 

• Google Apps - Mail, Calendar, Docs 

• Slack - chat and monitoring integrations 

• Mumble - voice conference 

• tmux, ngrok, vim (and mumble) - pair programming



Perguntas?
Estamos contratando! 
https://olist.com/trabalhe-conosco/

https://olist.com/trabalhe-conosco/

